

IF•Y آز آزون (نيمهمتمركز) ورود به دور ههاى دكترى ـسال

دفتر چهٔ شمارهُ (1)

صبح پنجشنبه
$1 F \cdot 1 / 1 / / 1 \mid$

جمهورى اسلامى ايران وزارت علوم، تحقيقات و فنّاورى سازمان سنجش آموزش كشور

زنتيكى و بهنرادى كياهى (كد FYM)

عنوان مواد امتحانى، تعداد و شمارهٔ سؤالات

تا شماره	از شماره	تعداد سؤال	مواد امتحانى	رديف
V.	1	V.	مجموعه دروس تخصصى: _ آمار و طرح آزمايشها ـ رثنتيكـ ــا اصلاح نباتات (اصلاح نباتات تكميلى) ـ بيومترى	1
	\|استفاده از ماشينحساب مجاز نيست.			

حق چحای، تكير و انتشار سؤالاتبهر روش (الكترونيكى و...) سِساز بركزارى آزمون، براى تمامى اششخاص حقيقى وحقوقى تنها با مجوز اين سازمان مجاز مىبالشدو با متخلفين برابر مقررات رفتار مىشود

صفحه
(380F)
زنتيكى و بهنزادى گياهى (كد اMF)

* داوطلب گَرامى، عدم درج مشخصات و امضا در مندر جات جدول زير، بهمنزلئ عدم حضور شما در جلسهٔ آزمون است.

با آكاهى كامل، يكسانبودن شماره صندلى خود با \qquad با شماره داوطلبى اينجانب شمارهٔ داوطلبى مندرج در بالاى كارت ورود به جلسه، بالاى پاسخنامه و دفتر چهٔ سؤالات، نوع و كد كنترل درج شده بر روى جلد دفتر چdٔ سؤالات و پايين پاسخّا

امضا:

 پپيشرفته (اصلاح نباتات تكميلىى) ـبيومترى):

$$
\begin{aligned}
& \text { اگَ } \\
& \pm 1,99 \sigma_{\bar{x}}\left(r \quad \pm 1,9 \varphi \sigma_{\bar{x}}(1\right. \\
& \pm r, \mu \mu \sigma_{\bar{x}}^{r}\left(r^{r}\right. \\
& \pm 1,99 \sigma_{\bar{X}}^{r}
\end{aligned}
$$$-1$

ی

$$
\begin{array}{cc}
\text { rolr } & \text { ro (l } \\
\text { Vro (r } & \text { ro (rol }
\end{array}
$$

٪- اگَر ميانگَين و واريانس يك توزيع دو جملهاى بهترتيب برابر با 1 ا و ^ باشد، تعداد مشاهدات اين توزيع كدام است؟

$0,9(1$
$0, V(Y$
$0,1(r$
$0,9(4$

$$
\begin{array}{lc}
r \mathrm{e}^{-r}(r & \mathrm{e}^{-r}() \\
\Delta \mathrm{e}^{-r}(r & r \mathrm{e}^{-r}(r
\end{array}
$$

 ra (Y بر $\quad \Delta$ (
raOM
ird (r

$$
\begin{array}{ll}
\mu(r & 1() \\
1(r & r(r
\end{array}
$$

-

$$
\begin{array}{r}
0, r \Delta \sigma_{1}^{r}+0, g \varphi \sigma_{r}^{r}(1) \\
0, r \Delta \sigma_{1}^{r}-0, g \varphi \sigma_{r}^{r}(r \\
0, r \Delta \sigma_{1}^{r}+0, g \varphi \sigma_{r}^{r}+9(r \\
0, r \Delta \sigma_{1}^{r}-0, g \varphi \sigma_{r}^{r}+9(\varphi)
\end{array}
$$

تشخيص (rr پ چقدر است؟

$$
0, g 4 \in T
$$

$1\left({ }^{\circ}\right.$
$0,19(1$
$0,14(4$
در بر رسى آمارى \&
 است. با انجام دو نسل خودلقاحى، نسبت افراد هتروزيعَوت در اين جامعه، كدام مورد است؟

$$
\begin{aligned}
& \frac{1}{v}() \\
& \frac{1}{1}(r \\
& \frac{1}{19}(r \\
& \frac{1}{r}(\varphi
\end{aligned}
$$

 مغلوب را نشان مىدهند؟ در هر دو مكان رنى رابطه آللها از نوع غلبه است. (A بر a و B بر b غلبه دارد.)
$0,1(r$
0,19 (4)
$0,01(1$
$0,4(\%$

صفحه

$$
\begin{array}{ll}
\frac{r}{19}, \frac{9}{19}(r & \frac{r}{44}, \frac{9}{44}() \\
\frac{4}{19}, \frac{1}{19}(4 & \frac{r}{94}, \frac{1}{94}(r
\end{array}
$$

نسبت فنوتيبى حاصل خواهد شد؟

$$
\begin{array}{ll}
r: 1(r & r:)(1 \\
9: V(4 & 1: 1(r
\end{array}
$$

در كدام جامعه زير، تعداد زنوتيپها（بهتر تيب از راست：هموزيگَوس غالب، هتروزيگَــوس و هموزيگَـوس مغلــوب）

ץ) كنترل منفى - مدل ایرونى

$$
\begin{array}{ll}
\frac{10}{19}, \frac{1}{19}(r & \frac{10}{r r}, \frac{1}{r r}() \\
\frac{10}{r r}, \frac{1}{19}(F & \frac{10}{19}, \frac{1}{r r}(r
\end{array}
$$

براى شروع رونويسى در زنهاى پروكاريوت، حضور و شناسايى جعبه ．．．．．．．．．．．．．．．．．．．．با كمك فاكتور ．．．．．．．．．．．．．．．．．．لازم است．

$$
\begin{aligned}
& \beta-\text { CAAT }(\Gamma \\
& \sigma_{-} \text {TATA }(\uparrow
\end{aligned}
$$

σ＿GC（）
α＿TATA（
با با توجه به عبارت زير، كدام مورد درست است؟

״
مغلوب مضاعف هستند．＂

Y）دو مكان رنى بر روى كروموزومهاى متنفاوت قرار دارند（Y）
 ¢
 （Y）دى اكسى تيمين 1）（ دای دیاكسى آدنوزين
¢「 「 「 آمينويورين

A A (YNA ميزان پايدارى (Y)

() تعداد نسخدهاى زن

Y (Y) افراد هموزيگّوت تشكيل نمى دردود. ¢
() سيستم دو آللى است.
 كدام مورد، معرف آيوسيورى است؟ - TF

(
\& ¢
 كروموزوم آنها دو برابر شود، كدام مورد درخصوص گياهان دبلهإِلوئيد بهدست آمده درست است؟
() همه گَياهان هموزيگَوت مغلوب خواهند بود.

 ¢

 مادرى كدام است؟
،S - rf rf (Y نر بارور

S - Rf Rf (${ }^{(4)}$
(S - rf rf (
, N - Rf Rf (${ }^{\text {r }}$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} a_{l} a_{r} a_{r} A_{r} a_{r}(r \\
& \mathrm{a}_{1} \mathrm{a}_{1} \mathrm{~A}_{\Gamma} \mathrm{A}_{\Gamma} \mathrm{A}_{r} \mathrm{~A}_{\mu}(\varphi \\
& A_{1} a_{1} a_{\Gamma} a_{\Gamma} a_{\Gamma} a_{r}(1 \\
& a_{l} a_{ノ} A_{\Gamma} a_{\Gamma} a_{\Gamma} a_{\Gamma}(\Gamma
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Y) غالب در والد مادرى (Y } \\
& \text { FY F }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fr غالب در نسل }
\end{aligned}
$$

در صورت وجود هرگونه پرسش و ابهام با شماره 9०99०VA
 بعدى كدام است؟

Y（ ¢（ آ آزمايش عملكرد اينبرد لاينها		（）تإپكراس	
		SCA	
		رتهاى است؟	كدام
H－DNA（ ${ }^{¢}$	D－DNA（ ${ }^{\text {r }}$	B－DNA（ Γ	A－DNA（）

． \qquad در جهت در پروكاريوتها، فعاليت اكترنوكلئازى آنزيم ． $-r a$ ．DAN

$$
r^{\prime} \rightarrow \Phi^{\prime} \text { - III }
$$

$$
r^{\prime} \rightarrow \Delta^{\prime} \text { - I پ्لىمراز DNA (। }
$$

$$
\Delta^{\prime} \rightarrow r^{\prime}-I \text { I پلى }
$$

צץ- منظور از DNA هترودوپلكس، كدام است؟
() قطعهاى از DNA مضاعف است كه منشأ دو رشته آن با هم متفاوت است.
r) سنتز چند قطعه كوتاه چند صد نوكلئوتيدى ('
؟) صورتهاى مختلف يك سيسترون كه در جايكاه نوكلئوتيدى يكسان جهشيافته باشند.

. را دارد.
\qquad
\qquad يا نوكلئوتيد ． \qquad به

$$
\mathrm{C}_{-} \mathrm{T}_{-} \mathrm{T}_{-} \mathrm{C}(\mathrm{r}
$$

$$
\mathrm{A}_{-} \mathrm{T}_{-} \mathrm{T}_{-} \mathrm{A}(1
$$

$$
\mathrm{T}_{-} \mathrm{C}_{-} \mathrm{A}_{-} \mathrm{G}(\Gamma
$$

Concatamers -
「) رونويسى از DNA باكترى رخ مىدهد.

DNA methylation（ r Sumolyation（ ${ }^{〔}$ ．

$$
\mathrm{T}_{-} \mathrm{A}_{-} \mathrm{C}_{-} \mathrm{G}(\varphi
$$

〔 ¢) همانندسازى DNA فار رخ مىدهد. ٪）همانندسازى DNA باكترى رخ میدهدد． q－ DNA mutation（ Histon Acetylation（r
 A＞a

$$
\begin{gathered}
\mid r: r: 1(r \\
10: 1(r
\end{gathered}
$$

r:1 (1

$$
\begin{aligned}
& \text { اץ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Y }
\end{aligned}
$$

سيسته زنهاى همپپشان، پيوسته و گسسته بهتر تيب بيشتر در كدام مورد مشاهده مىشود؟

 ¢ (
 ץ
 † ¢
) (ويروسها ـ قارتجها ـ گیياهان
 「) نماتدها ـ قارجها ـ ـ حشرات
 ز~ FY

 ٪) يك صفت را كنترل مى كند.
 برای وقوع حداقل اينبريدينتَ از كدام روش مىتوان استفاده كرد؟

 $-\mathrm{FF}$

نسل بعد چچند درصد است؟

$\varphi \circ(Y$	ro (
$9 \circ(\varphi$	$D \circ(r$

 -4Δ

 $\begin{array}{ll}0, f & \text { (r } \\ 1 \text { (r } & 0, r(1 \\ \text { (} & 0, \lambda(r\end{array}$
 ra (r (1) صغر
$100(4$
D ○ (
 ro (Y
Δ (1)
人○ (${ }^{q}$
ra (${ }^{(1)}$

$1(Y$
0,0 (1
$r(r$

$$
\begin{array}{ll}
V \circ(Y & \Lambda \circ() \\
r \circ(Y & q \circ(r
\end{array}
$$

$$
\begin{array}{ll}
0, \mu \mu(Y & 0,19(1 \\
0,4 \lambda(4 & 0,49(r
\end{array}
$$

- رقم گَندم پیشگًام در يك مزرعه يك هكتارى كشتشده و متوسط وزن هزار دانه آن \& F گرم است. از اين جميعت

گزینشيافته را با جمعيت اوليه كشت كنيمه، چه نتيـجهاى انتظار مىروود؟
() ميانگين هر دو جمعيت يكسان بوده و تفاوت معنىدارى نخواهند داشت.

¢
 Muir (Γ

AMMI ()
Eberhart-Russel Regression (${ }^{〔}$
Wrick Ecovalanc (Γ

- LF

$$
\begin{aligned}
& \text { 1) بذور ارتودوكس }
\end{aligned}
$$

- نهات جنين در كدام مورد، كاربرد بيشترى دارد؟

¢ه- كدام مورد در مقاومت به آفات، جزء Functional resistance نيست؟
Host evasion (r Escape ()
Induced resistance (\uparrow
non-preference (Γ
- DV

Interfield diversity (Γ
Intrafield diversity ()
gene deployment (${ }^{〔}$
Interregion diversity (Γ

- 99

1/a (
$r(r$
9 (
ir (4
•

North Carolina Design II (τ
Generation Mean Analysis (\uparrow

North Carolina Design I ()
Diallel Cross Analysis (Ψ

اء－براى محاسبه دترمينان ماتريس B عملياتى انجام داده و نتيجه زير بهدست آمده است، ضمناً ضرايب بهكار رفته

$$
|\mathbf{B}|=\ldots=\left|\begin{array}{ccc}
r & r & r \\
0 & \wedge & \Delta \\
0 & 0 & \varepsilon
\end{array}\right|
$$

if（
$\mathrm{HA}(\mathrm{r}$
－rf（r － FA （ F
（Yヶ－در كثير الجملههاى متعامد، ماتريس SP از كدام نوع ماتريس است؟

Y（
(Y) جذرى
() آنتى لكَاريتمى
（ \uparrow
٪）گرافيكى

$$
\sum_{i=1}^{m} \sum_{i-1}^{n} \sum_{l_{k-1}}^{r} y_{i j k}
$$

اءر بر آورد ميانگیين عملكرد،

$$
\begin{array}{ll}
\overline{\overline{\mathrm{y}}}=\mu+\bar{\alpha}_{\mathrm{m}}+\overline{\overline{\mathrm{e}}}_{\mathrm{mnr}}(r & \overline{\overline{\mathrm{y}}}=\mu+\overline{\overline{\mathrm{e}}}_{\mathrm{mnr}}() \\
\overline{\overline{\mathrm{y}}}=\mu+\overline{\bar{\beta}}_{\mathrm{mn}}+\overline{\overline{\mathrm{e}}}_{\mathrm{mnr}}(\boldsymbol{\varphi} & \overline{\overline{\mathrm{y}}}=\mu+\bar{\alpha}_{\mathrm{m}}+\overline{\bar{\beta}}_{\mathrm{mn}}+\overline{\overline{\mathrm{e}}}_{\mathrm{mnr}}
\end{array}
$$

צ६－در دو مدل ركرسيونى زير، ع داراى كدام خصوصيات است؟

$$
\left\{\begin{array}{l}
Y=\beta_{\circ}+\beta_{1}^{X}+\varepsilon \\
Y=\beta_{\circ}+\beta_{1} \sin X_{1}+\beta_{r} e^{X_{r}}+\varepsilon
\end{array}\right.
$$

－9V

$$
\begin{gathered}
n-r \\
() \\
n+r \\
(r \\
n+1
\end{gathered}\binom{r}{n}
$$

$$
\begin{aligned}
& \text { () ميانگیين صفر و واريانس يى } \\
& \text { (Y) ميانگين و واريانس صفر ورين } \\
& \text { r } \\
& \text { 〒 }{ }^{〔}
\end{aligned}
$$

9^- اكر اميد رياضى MS، طبق معادلات زير باشد. براى آزمون $\mathbf{E}\left(\mathrm{MS}_{\alpha}\right)=\sigma_{\mathrm{e}}^{r}+\mathbf{k}_{11} \sigma_{\beta}^{r}+\mathbf{k}_{1 r} \sigma_{\alpha}^{r}$
$\mathbf{E}\left(\mathbf{M S}_{\beta}\right)=\sigma_{\mathrm{e}}^{r}+\mathbf{k}_{r} \sigma_{\beta}^{r}$
$\mathrm{E}\left(\mathrm{MS}_{\mathrm{e}}\right)=\sigma_{\mathrm{e}}^{\boldsymbol{r}}$

$$
\begin{array}{ll}
\frac{\mathrm{MS}_{\alpha}}{\mathrm{MS}_{\mathrm{e}}}(\uparrow & \frac{\mathrm{MS}_{\alpha}}{\mathrm{MS}_{\beta}}() \\
\frac{\mathrm{MS}_{\beta}}{\mathrm{MS}_{\alpha}}(\uparrow & \frac{\mathrm{MS}_{\beta}}{\mathrm{MS}_{\mathrm{e}}}(\uparrow
\end{array}
$$

. در مورد دادههاى
روشى است براى بر آورد ضرايب . 99-

() ساده ـ همبستگى ـ متعامد

٪٪) ريج - رگرسيون - غيرمتعامد
كدام مدل، خطى نيست؟ -V.

$$
\begin{array}{rr}
Y=\beta_{\circ}+e^{\beta, X}+\varepsilon(Y & Y=\beta_{\circ}+\beta_{1} X+\varepsilon() \\
Y=\beta_{\circ}+\beta_{1} \sqrt{X}+\varepsilon(\uparrow & Y=\beta_{\circ}+\beta_{1} \log X+\varepsilon(\Gamma
\end{array}
$$

\$

