

If+Y T آزمون (نيمهمتمركز) ورود به دور ههاى دكترى = سال

دفتر چهُ شمارهُ (1)

جمهورى اسلالمى ايران
وزارت علوم. تحقيقات و فنَّاورى
سازمان سنجش آموزشى كشور

مهندسى بليمر (كد FMq)

عنوان مواد امتحانى، نعداد و شمارة سؤالات

* * داوطلب گرامى، عدم درج مشخصات و امضا در مندر جات جدول زير، بهمنزلئ عدم حضور شما در جلسئ آزمون است.

امضا:

مجموعه دروس تخصصى (شيمىفيزيك پِيمرها ـ يد يدههاى انتقال (رئولوزڭى، اننقال حرارت وانتقال جرم):
ا- اتر در تركيب درصد ثابت از يك آميزه برحسب درجه حرارت، سامانه ييوسته كدر اما با تغيير فزاينده يا كاهنده از يك جزء شفاف شود، نوع آميزه كدام است؟
LCST (r

UCST بر LCST (\uparrow
LCST بر UCST (μ

شيشهاى آن را در فشار اتمسفرى، ثابت نگَاه داشت؟
$r(f \quad r(r$
با با بهبود كيفيت حلال براى يك يليمر معين، نسبت ضريب دوم ويريال به ضريب فلورى ـهاكَينز محلول جه تغييرى مى كند؟

> 1) كاهش
f
(
 (r
() كاز ايدئال
f

دو سيال نيوتنى امتزاجنايذير بين دو صفحه بینهايايت ساندويج شدهاند كاند كه صفحه بالايى با سرعت ثابت V مطابق

دو سيال كدام مورد نادرست است؟

() در اين جريان پسا (drag) سرعت بايستى در سطح مشتركى دارای مقدار و پيوسته باشد.
 اعمال مى كند، برابر است.
 به سيال بالايى اعمال مى كند و هر دو بر برابر صفر هستندي
¢) براساس شرط عدملغزش (no-slip) سرعت سيال در همسايگى يك جاير جامد با با آن برابر است و بنابراين سرعت در
تماس صفحه پايينى برابر صفر و در تماس باس با صفحه بالايّي برابر V V است.
-Y (a كروى با آرايش شش وجهى (a)

 (d) استوانهاى بلند با آرايش تصادفى سهبعدى

$$
\left.\left.\left.\left.\left.\phi_{\mathrm{m}}\right)_{\mathrm{c}}>\phi_{\mathrm{m}}\right)_{\mathrm{d}}>\phi_{\mathrm{m}}\right)_{\mathrm{a}}\left(r \quad \phi_{\mathrm{m}}\right)_{\mathrm{a}}>\phi_{\mathrm{m}}\right)_{\mathrm{b}}>\phi_{\mathrm{m}}\right)_{\mathrm{d}}
$$

$$
\left.\left.\left.\left.\left.\phi_{\mathrm{m}}\right)_{\mathrm{a}}>\phi_{\mathrm{m}}\right)_{\mathrm{b}}>\phi_{\mathrm{m}}\right)_{\mathrm{c}}\left(\uparrow \quad \phi_{\mathrm{m}}\right)_{\mathrm{c}}>\phi_{\mathrm{m}}\right)_{\mathrm{d}}>\phi_{\mathrm{m}}\right)_{\mathrm{b}}(\Gamma
$$

 كدام است؟
() رفتار كرانشونده برشى (Shear thickening) يعنى افزايش ترانرانروى با افزايش نرخ برن برش (Y「 ¢

چرخش مى كند. نوع ميدان ايجادشده در سيال بين دو صفحه كدام است؟

9099०VAF。V

$$
\begin{align*}
& 1(4 \\
& \text { r () } \\
& -1 \text { (} \uparrow \text { (} \\
& \text { كدام رفتار سيال برازنده رنگَ ساختمان است؟ }
\end{align*}
$$

 در اين جسم به فر م زير است.) $\frac{T(x, t)-T_{o}}{T_{i}-T_{o}}=\operatorname{erf}\left(\frac{x}{r \sqrt{\alpha t}}\right), \operatorname{erf}(\eta)=\frac{r}{\sqrt{\pi}} \int_{0}^{\eta} e^{-\eta^{r}} d \eta$

$$
\begin{gathered}
\frac{\mathrm{k}\left(\mathrm{~T}_{\mathrm{c}}-\mathrm{T}_{\mathrm{i}}\right)}{\sqrt{\pi \alpha \mathrm{t}}}(\mathrm{l} \\
\mathrm{k}\left(\mathrm{~T}_{\circ}-\mathrm{T}_{\mathrm{i}}\right) \sqrt{\frac{\pi \alpha}{\mathrm{t}}}(\zeta \\
\frac{\mathrm{Kk}\left(\mathrm{~T}_{\circ}-\mathrm{T}_{\mathrm{i}}\right)}{\sqrt{\pi \alpha \mathrm{t}}}(\Gamma \\
\mathrm{Kk}\left(\mathrm{~T}_{\circ}-\mathrm{T}_{\mathrm{i}}\right) \sqrt{\frac{\mathrm{t}}{\pi \alpha}}
\end{gathered}
$$

Ir

k
x = 0 دماى سطح در در : T, $x=r L$ L دماى سطح در : T_{r}
$\dot{\mathrm{q}}=\frac{\mathrm{k}}{\mathrm{L}} \frac{\mathrm{T}_{1}-\mathrm{T}_{Y}}{\mathrm{r}_{\mathrm{L}}}()$
$\dot{\mathrm{q}}>\frac{\mathrm{k}}{\mathrm{L}} \frac{\mathrm{T}_{1}-\mathrm{T}_{Y}}{\mathrm{r}_{\mathrm{L}}}(\mathrm{r}$
$\dot{\mathrm{q}}=\frac{\mathrm{k}}{\mathrm{L}} \frac{\mathrm{T}_{1}+\mathrm{T}_{r}}{r}(r$
$\dot{\mathrm{q}}>\frac{\mathrm{k}}{\mathrm{L}} \frac{\mathrm{T}_{1}+\mathrm{T}_{r}}{r}\left({ }_{r}\right.$
ri- برای يكى كره كه در مايعى معلق است، ناسلت متوسط بهصورت Nu = Y + m Re
 m (l m (r
 (f

ضريب انتقال حرارت متوسط در ميعان فيلمى بر روى يكى صفحه عمودى، با افزايش ارتفاع صفحه چگگونه تغيير مى كند؟

$$
\begin{aligned}
& \text { () زا زياد میشود. }
\end{aligned}
$$

 عَاز با دبى

OTHET 0, fF (f
$0,11(1$ $0, \mu \mu$
 هواى اطراف خود با شدت
 سيستم يكـ اتمسفر است.)

$$
0,01(1
$$

o,or (r
$0,0 \mathrm{H}$ (
o, of (f
1^ - كدام تزاره در مورد انتقال جرم درست است؟
() جابهجايى آب در اثر وجود تَراديان دما

〒 ¢ (

$$
\begin{array}{r}
\mathrm{J}_{\mathrm{A}}^{*}=-0, r \mathrm{CD}_{\mathrm{AB}} \exp (0, r \mathrm{Vz})(r \\
\mathrm{J}_{\mathrm{A}}^{*}=-0,9 \mathrm{CD}_{\mathrm{AB}} \frac{\mathrm{x}_{\mathrm{A}}}{\mathrm{Z}}(\varphi
\end{array}
$$

$$
\begin{array}{r}
\mathrm{J}_{\mathrm{A}}^{*}=0, r \mathrm{rCD} \\
\mathrm{~J}_{\mathrm{AB}}^{*}=0, r \mathrm{CD}_{\mathrm{AB}} \frac{\mathrm{x}_{\mathrm{A}}}{\mathrm{Z}}\left(\mathrm{r}^{*}, \mathrm{r}_{\mathrm{z}}\right)(1
\end{array}
$$

 پروفايل غلظت بخار آب كدام است؟

$$
\begin{aligned}
\mathrm{C}_{\mathrm{A}}=-\frac{\mathrm{a}}{\mathrm{Cr}}+\frac{\mathrm{b}}{\mathrm{C}}(r & \mathrm{C}_{\mathrm{A}}=-\frac{\mathrm{a} \cdot \mathrm{C}}{\mathrm{r}}+\mathrm{bC}() \\
\mathrm{y}_{\mathrm{A}}=-\frac{\mathrm{a}}{\mathrm{Cr}}+\frac{\mathrm{b}}{\mathrm{C}}(r & \mathrm{y}_{\mathrm{A}}=-\frac{\mathrm{a}}{\mathrm{r}}+\mathrm{b}(r
\end{aligned}
$$

مبانـى پِيشرفتته مـنـدسى پِليمر:

در متراكم و چحًال شدن يكـ ماده بهتر تيب كدام مشخصههاى ذاتى، ترموديناميكى و مكانيكى و در چه جهتى $-r I$
تغيير مى كنند؟
() كاهش كار مكانيكى، كاهش وارون انرزى حرارتى و كاهش واحد انرزى حرارتى

 ¢) كاهش كسر اشغالشده، كاهش واحد انرزى حرارتى و كاهش كار مكانيكى
(rr -r Y) عدد فركتال سطح تماس پليمر

「

شبيهسازى قابل دستيابى هستند.

() معيارى از دماى انتقال شيشهاى پليمر است.

T

در پليمريزاسيون رسوبى، با كاهش تمايل پليمر به محيط واكنش، اندازه ذرات و شاخص پراكندگى آنها بها بهتر تيب

كمكعامل فعال سطحى (كوسورفكتانت) در دو روش پليمريزاسيون مينى امولسيونى و ميكروامولسيونى، بهتر تيب چه
موادى هستند؟

تعليق كدام است؟

-

مدول الاستيكى ناشى از حضور نانولوله كربنى براى كدام
() براى نمونه بلورين
Y برای نمونه آمورف
٪) براى هردو يكسان است.

rץ- در رابطه با رقابت دو سازوكار خستگى حرارتى (Thermal fatigue) و شكست ناشى از خستگى (Fatigue fracture)
كدام مورد درست است؟

¢ ¢) تنشهاى پايين و فر كانسهاى بالا به نفع سازوكار خستگى حرارتى است.

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (r كاهش - افزايش } \\
& \text { (Y) افزايش - افزايش } \\
& \text { () كاهش - كاهش } \\
& \text { r (افزايش ـ كاهش }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (افزايش - افزايش } \\
& \text { (}
\end{aligned}
$$

r r
() با افزايش تنش تسليه افزايش مىيابد.
Y) با افزايش درجه بلورينگى كاهش مى يابد.
٪) با افزايش تنش اعمالى يا افزايش دماى محيط مصرف افزايش مىيابد.
f() با افزونن مواد تقويت كنـنده يا كاهش دماى محيط مصرف كاهش مىيابد.

(婇) بدتر تيب كدام است؟

$$
\sigma_{\mathrm{y}}=\Delta \mathrm{MPa}
$$

$$
90,1 / 0(1
$$

غيرالاستيك (Inelastic) كدام مورد درست است؟

 r (f) مقد
 $\left(-\frac{1}{r} \leq \frac{\mathbf{q}_{\mathbf{p}}}{\mathbf{q}_{\mathbf{d}}} \leq \frac{1}{r}\right)$ چارامترها و حتَّونه وابسته است () با طول دو صفحه نسبت مستقيم و با فاصله دو صفحه و نسبت Y (Y) با طول دو صفحه نسبت مستقيم و با تواندوم فاصله دو صفحه نسبت عكس دارد. (Y) با طول دو صفحه و فاصله دو صفحه نسبت مستقيمّ دارد.
¢) با طول دو صفحه و نسبت
 (Clearance)

٪
٪ ¢) ممان اول، دوم و سوم افزايش مى يابد.
^r- كدام مورد براى طراحى ناحيه vent اكسترودر فرارزدا (vented extruder) درست است؟ است () نسبت پمياز يكسان، حداقل عمق كانال ممكن (با رعايت استحكام مكانيكى) و حداقل طول ممكن (با رعايت ساير دراير
محدوديتهاى طراحى)
Y) نسبت پمپاز بالاى يك، حداكثر عمق كانال ممكن (با رعايت استحكام مكانيكى) و حداكثر طول ممكن (با رعايـت ساير محدوديتهاى طراحى)

¢
q৭...................... استفاده شود، براى دستيابى به ضخامت نوارى شدن مورد نيار نيار (Striation thickness)
() كسر حجمى فاز متفرق مطمه است.
 مورد نياز است. ץ) هر چهه ابعاد فاز متفرق بزر رَتر و كسر حجمى فاز متفرق كوچكـتر باشد، تغييرشكل كل (total strain) بيشترى
مورد نياز است.
\& ¢) هر چه ابعاد فاز متفرق كو حكتر و كسر حجمى فاز متفرق بزرگَتر باشد، تغييرشكل كل (total strain) بيشترى
مورد نياز است.

〒

$$
q \xi \eta(1
$$

$$
\begin{aligned}
\eta(1-r \xi) & (r \\
\xi(1-\eta) & (r \\
1-\xi-\eta-r \xi \eta & (r
\end{aligned}
$$

(

$$
\begin{aligned}
& \varphi_{1}=(1-\xi)(1-\eta), \varphi_{r}=(1-\xi) \eta \\
& \varphi_{r}=\xi(1-\eta) \quad, \varphi_{F}=\xi \eta
\end{aligned}
$$

$$
\left[\begin{array}{cc}
r+\eta & r+\xi \\
1 & r
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
r+\eta & 1 \\
r+\xi & r
\end{array}\right](r
$$

$$
\left[\begin{array}{ll}
r & 1+\eta \\
r & r+\xi
\end{array}\right](r
$$

$$
\left[\begin{array}{cc}
r & r \\
r+\eta & r-\xi
\end{array}\right](r
$$

$$
\left.\int_{\circ}^{1} \frac{\partial u}{\partial y}\right|_{y=\circ} \varphi_{i} d x \quad(1
$$

$$
\left.\int_{o}^{1} \frac{\partial \mathbf{u}}{\partial \mathrm{x}}\right|_{\mathrm{x}=\circ} \varphi_{\mathrm{i}} \mathrm{dy}(r
$$

$$
-\left.\int_{0}^{\prime} \frac{\partial u}{\partial x}\right|_{x=0} \varphi_{i} d y
$$

$$
-\left.\int_{0}^{\prime} \frac{\partial u}{\partial y}\right|_{y=o} \varphi_{i} d y(\varphi
$$

- $\mathrm{F} \ddagger$

$$
\begin{aligned}
& \frac{\Delta x}{r}(r \\
& \frac{\Delta x}{\Lambda}(r
\end{aligned}
$$

$$
\Delta x(1
$$

$$
\frac{\Delta x}{r}(r
$$

(residue) محاسبه میشود؟
(r) كولوكيشن (Collocation) (r
† (Yetrov _ Galerlcin) يتروف ـ تالر كين (Y)
() (Moment) ممانى
(Least square) حداقل مربعات (

مبانى علوم وفتّاورى رنتّا:

f(جابهجايى هييسوكروميى

$$
\begin{aligned}
& \text { () جابهجايى باتوكروميك }
\end{aligned}
$$

با استفاده از قانون جمع صفر، ضريب هوكل براى تركيب زير كدام است؟ -FV

$$
\begin{aligned}
& \frac{1}{\sqrt{r}}() \\
& \frac{1}{\sqrt{\Delta}}(r \\
& \frac{1}{\sqrt{V}}(r \\
& \frac{1}{\sqrt{q}}(f
\end{aligned}
$$

- FA

$$
\begin{array}{r}
\text { (}) \\
\text { (الكتروندهنده ـ گیيرنده (ץ }
\end{array}
$$

كدام مورد درخصوص نقطه ايزوانرزتيكـ درست است؟
() انحراف بروكر در نقطه ايزوانرزتيك بالاترين مقدار را دا دارد.

Y (Y) مستقل از قطبيت حلال است و بيشترين اثر باتوكروميكى در اين نقطه ديده مىشود. ץ

صورت غيرهمگَرا صورت مىگیيرد.

$$
\begin{array}{ll}
\text { r }
\end{array}
$$

$$
\begin{aligned}
& \text { () حضور گَروههاى دهنده و گیيرنده بهجاى R R R تغيير قابل R R }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ץ) وقتى كه R R' } \\
& \text { † }
\end{aligned}
$$

- Ar

 خواهد داد.
 ملاحظهاى افزايش خواهد

$\lambda_{\text {max }}\left(\Delta, \Delta^{\prime}-\right.$ dimethoxy $)=\varphi \psi \Delta \mathrm{nm}$
$\lambda_{\text {max }}\left(\varphi, \varphi^{\prime}-\right.$ dimethoxy $)=\Delta \gamma \circ \mathrm{nm}$

 شرايط فرايندى جهت سنتز رزين رزول كدام است؟ () نسبت مولى فنول به فرمالدئيد كمتر از يكـ و و محيط باز بازي

¢ه- درخصوص كويليمريزاسيون زنجيرهاى دومنومرى كدام مورد درست است؟

$r_{1} \times$ r $_{r} \rightarrow 0$ (Y
$r_{1} \times$ r $_{\Gamma} \rightarrow 0$ (Y f) تركيب كويليمر وابسته به وجود يا عدم وجود بازدارندهدها يا يا عوامل انتقال زنجيره است.

 (

- ه^

 $0,00(1$
$0,9 V(4$
$1<r$
$1,0<r$

 وزنى ایوكسى مخلوط به جند قسمت وزنى عامل پخت آمينى با ميزان اكىوالان وزنى هيدروثنى فعال $\Delta(1$ $10(r$ $10(4$ ro (f
- • - استفاده از كدام مونومر در ساخت رزينهاى پلىاستر غيراشباع موجب بالاتر رفتن تمايل واكنشدهى آن مىشود؟

$$
\begin{aligned}
& \text { (Y) هالئيك اسيد } \\
& \text { (}
\end{aligned}
$$

> 1000()
> $1000(r$
> $r 000(r$
> $r 000(f$

 Y) افزايش جرم مولكولى در پليمريزاسيون تراكمى در درصد تبديلهایى بالا مشاهده مىشود.

فلز آلومينيوم در كدام محدوده pH

$$
\begin{gathered}
0-9(1 \\
0-9(Y \\
9-1 Y(Y \\
1 Y-1 F(F
\end{gathered}
$$

§ه كدام تر كيب در مورد مقاومت گَرمايى پوشش ها معمولاً درست است؟
个
 اين فلز چند

$$
\begin{aligned}
& 1,4 \times 10^{-\lambda} \\
& 0,9 \times 10^{-\lambda} \\
& r, \Psi \times 10^{-\lambda} \\
& 1, Y \times 10^{-\lambda}
\end{aligned}
$$

كدام مورد از محدوديتهاى نمودارهاى پوربه نيست؟ -FV

Y) المكان طراحى نمودارهاى يوربه براى دماهاى بالاتر از

موقعى كه يكـ واكنش كاتدى وجود داشت، چه تغييرى مى كند
(Y) دو برابر
() افزايش
¢ ¢ (٪) نصف
99- تعداد الكترونهاى معادل يكى كولن الكتريسيته كدام است؟

$$
9,541 \times 10^{11}(1
$$

99000 (Y

$$
\begin{array}{r}
9, \circ r \times 10^{\pi T}(4 \\
r 9, \lambda(4
\end{array}
$$

(براى روى اندودكردن يك قطعهٔ فولادى در حمام آبكارى كدام مورد درست است؟ -V. () قطعه در آند قرار می گيرد و و داراى بار مار منفى است است
 ٪ ¢) قطعه در كاتد قرار مى گیيرد و واراراى بار مثبت است.

