

IF•Y آزمون (نيمهمتمركز) ورود به دور ههاى دكترى - سال

حق حالي تكير و انتشار سؤالاتبه هر روش (اللكترونيكى و...) پِ الز بركزارى آزمون، براى تمامى اشخاص حقيقى حقوقى تنها با مجوز اين سازمان مجاز ممباشدو با متخلفين برابر مقرات رفتار مىشود.

(4)irantahsil.org

* * داوطلب ترامى، عدم درج مشخصات و امضا در مندر جات جدول زير، بهمنزلئ عدم حضور شما در جلسئ آزمون است.

امضا:

 سيَّنال هاى يزششكى _كنترل سيستمههاى عصبى عضضلنى):

مكان هندسى

$$
\begin{gathered}
\sqrt{\mathrm{x}^{r}+1} \\
\frac{\sqrt{\mathrm{x}^{r}+1}}{r} \\
\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{r}+1}} \\
\frac{\mathrm{x}}{r} \sqrt{\mathrm{x}^{r}+1}
\end{gathered}
$$

(

$$
\text { كدام است؟ } \lim _{x \rightarrow 0} \frac{1}{x^{r}} \int_{0}^{x^{r}} \sin \sqrt{t} d t \text { مقدار }
$$

$$
\begin{aligned}
& \text { (Y } \\
& \text { ¢ } \\
& \begin{array}{c}
\frac{r}{r}() \\
-\frac{r}{r}(r
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
r y-r z-1 & =0(r \\
x-y-r & =\circ(r
\end{aligned} r y+r z+v=0()
$$

$$
\text { مقدار مشتق جهتى تابع f(x,y)= } \mathbf{e}^{-x y} \text { - }
$$

$$
-\mathrm{e}(1-\sqrt{r})(r \quad-\mathrm{e}(1+\sqrt{r})(1
$$

$$
-\frac{\mathrm{e}}{r}(1-\sqrt{r})\left(\varphi \quad \frac{-\mathrm{e}}{r}(1+\sqrt{r})(r\right.
$$

$$
\sqrt{r}(r
$$

1 (

درستاست؟

$$
\begin{array}{ll}
\mathrm{V}=\frac{r}{r} \iint_{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{dS}(r & \mathrm{V}=\frac{r}{r} \iint_{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \cdot \mathrm{ndS}() \\
\mathrm{V}=\frac{1}{r} \iint_{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \cdot \mathrm{ndS}(r & \mathrm{V}=\frac{1}{r} \iint_{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{dS}(r
\end{array}
$$

-

$$
\begin{array}{ll}
\mu(r & r() \\
q(\varphi & \Delta(r
\end{array}
$$

(11- مسيرهاى قائم دسته منحنىهاى

$$
r \ln (\sinh y)+x^{r}=c\left(r \quad r \ln (\cosh y)+x^{r}=c(1\right.
$$

$$
\ln (\sinh y)-x^{r}=c(r
$$

$$
\frac{\mathrm{ce}^{\mathrm{x}}}{\mathrm{x}}(\mathrm{r}
$$

$$
\frac{c \ln x}{x}(
$$

$x \ln \mathrm{cx}(4$

$$
\begin{aligned}
& \text { كدام است؟ } \lim _{n \rightarrow \infty} n \sum_{k=1}^{n} \frac{1}{(r n+r k)^{r}-k^{r}} \quad \text { - } \\
& \ln \frac{1}{r}\left(r \quad \frac{1}{r} \ln \frac{1}{r}(1\right. \\
& \ln \frac{r}{r}\left(r \quad \frac{1}{r} \ln \frac{r}{r}(r\right.
\end{aligned}
$$

($x=-r$ (
 X (

 $\Delta \frac{d y(t)}{d t}+1 \circ y(t)=9 x(t)$

نيست و مشكل اين روش كدام است؟

تأخير زمانى در تابع تبديل مسير مستقيم
 در تابع تبديل مسير مستقيم
٪

$$
\begin{aligned}
& \frac{10}{a}, \frac{9}{10} \text { ، بالآ } \\
& \frac{\Delta}{10}, \frac{9}{10} \text { (1) بالآكذ }
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(-\frac{x^{r}}{r}\right)-c \exp \left(-x^{r}\right)(r \\
& c \exp \left(-\frac{x^{r}}{r}\right)-\exp \left(-x^{r}\right) \text { () } \\
& \exp \left[c \exp \left(-\frac{x^{r}}{r}\right)-\exp \left(-x^{r}\right)\right]\left({ }_{r} \quad \exp \left[\exp \left(-\frac{x^{r}}{r}\right)-c \exp \left(-x^{r}\right)\right](r\right. \\
& \text { lif } \\
& \begin{array}{l}
\frac{r}{t}(\cos t-1)(1 \\
\frac{r}{t}(1-\cos t)(r \\
\frac{1}{t}(1-\cos t)(r \\
\frac{1}{t}(\cos t-1)(r
\end{array}
\end{aligned}
$$

 19- در يك كلينيکى براى ثبت سيگنالهاى الكتريكى مغز از الكترودهاى نقره-كلريد نقره (Ag-AgCl) استفاده
 كثيفى الكترود از سمبادهكشى توسط براده فولاد استفاده كند، چه فاكتورى در اين الكترود تغيير پيدا مى کند؟ و چحه تأثيرى روى سيگَنالهاى ثبتشده توسط اين الكترود خواهد داشت؟

 دمايى، بالا است؟ ميزان رزولوشن و ميزان افست اين سنسور چچقدر است؟

() (Y Y Y Y _ _
¢ ¢ ¢ (

بخشبندى سيگَنال و متوسطگیرى (Averaging) بين بخشها، يكى از روشهاى مطرح براى حذف نويز از سيگّنال
است. كداميك از حالتهاى زير براى حالتى كه سيگَنال مورد مطالعه و نويز موجود بهتر تيب چگَونه باشند، كار آمد است؟ () كاملاً تصادفى (Stochastic) قابل تخمين

مطالعه در اين سيگَنال چند هرتز است؟

() افزايش تعداد بيتهاى مبدل آنالوگ به ديجيتال دستگاه ثبت ـ باند فركانسى كمتر از Y) افزايش فر كانس نمونهبردارى دستگاه ثبت ـ باند فر كانسى كمتر از Yoo هرتز ٪) افزايش تعداد بيتهاى مبدل آنالوگ به ديجيتال دستگاه ثبت ـ باند فركانسى كمتر از 100 هرتز ¢ (افزايش فر كانس نمونهبردارى دستگاه ثبت ـ باند فر كانسى كمتر از
مى خواهيم براى مدلسازى قلب و سيستم گردش خون، يكـ مدار معادل الكتريكى ارائه نماييهم. اگَر معادل فشـــر خــــون در

() جريان الكتريكى، خازن، مقاومت اهمى، ديود، منبع ولتاز
Y) جريان الكتريكى، خازن، مقاومت اهمى، ديود، منبع جريان

؟) جريان الكتريكى، اندوكتانس (سلف)، مقاومت اهمى، ديوه، منبع ولتاز
¢ ¢

وضعيت استفاده مىشود. عمدهترين ضعف اين دو حسگر بهترتيب كدام است؟
Y) حساسيت به تغيير دما، هزينه بالا

$$
\begin{aligned}
& \text { Y) هزينه و امكان حمل: كم ـ بالا، متوسط ـ متوسط، بالا وجود ندارد، خيلى بالا وجود ندارد. }
\end{aligned}
$$

 (C ($\mathrm{l} \circ \mathrm{Hz}$)
 r (r) از هر دو سيگَنال،rN DFT نقطهاى (با اضافه كردن صفر) بعیيريم.

 از فيلترهاى زير (كه تابع تبديل آن داده شده است) چحنين كارى را انجام مىدهد؟ آن $H(z)=1-e^{j \frac{\pi}{r_{0}}} z^{-1}+e^{j \frac{\mu \pi}{r_{0}}} z^{-r}\left(r \quad H(z)=1-e^{j \frac{\pi}{1_{0}}} z^{-1}-e^{j \frac{\mu \pi}{r_{0}}} z^{-r}(1\right.$

$$
H(z)=1-\left(e^{j \frac{\pi}{r_{0}}}-e^{j \frac{\pi}{1_{0}}}\right) z^{-1}-e^{j \frac{r \pi}{r_{0}}} z^{-r}\left(r^{\varphi} \quad H(z)=1-\left(e^{j \frac{\pi}{r_{0}}}+e^{j \frac{\pi}{1_{0}}}\right) z^{-1}+e^{j \frac{\mu^{\prime} \pi}{r_{0}}} z^{-r}(\mu\right.
$$

 به نويز ورودى SNR (dB)

$$
R R M S E=\frac{\sqrt{\sum_{n=1}^{N}\left(x_{\text {org }}[n]-x_{\text {denoised }}[n]\right)^{r}}}{\sqrt{\sum_{n=1}^{N}\left(x_{o r g}[n]\right)^{r}}}
$$

$\mathbf{(S N R}_{\text {Im provement }}=\mathbf{S N R}_{\text {out }}-\mathbf{S N R}_{\text {in }}$ 10 (1 ra (r 10(ro (y

$$
\begin{aligned}
& \mathrm{H}(\mathrm{z})=1-\frac{1}{r} z^{-1} \\
& \mathrm{H}(\mathrm{z})=\frac{1}{1-\frac{1}{r} z^{-1}}(r \\
& \mathrm{H}(\mathrm{z})=\frac{1+\frac{1}{r} z^{-1}}{1-\frac{1}{r} z^{-1}}
\end{aligned}
$$

(r• (سيگَنالهاى (X,
متوسط روى پنج كانال مى

 سالم 10 برابر شود، Sensitivity و Specificity Spec $_{\text {max }}=\%$. 9 ، Spec $_{\text {min }}=\%$ ، Sens. $=\%$. \circ (

Sens. ${ }_{\text {max }}=\% .9 \wedge$ ، Sens. ${ }_{\text {min }}=\%$ ، Spec. $=\%$. \circ ($(\uparrow$
Spec. $_{\text {max }}=\% .90$ ، Spec. $_{\text {min }}=\% 19$ ، Sens. $=\%$. \circ (${ }^{¢}$

 است. z يك متغير تصادفى نرمال با متوسط صفر و واريــانس واحــد و مســتقل از x[n] اسـت. در مــورد فراينـد

 بخواهيم اين سيگنال را با يكى از مدلهاى پارامترى ARMA MA AR يا مدل كنيم، كدام مورد مناسبتر است؟

AR (Γ
ARMA ()

MA (${ }^{(}$

 $\left\{\begin{array}{l}y_{1}(t)=x_{1}(t)+r(t)+n_{1}(t) \\ y_{Y}(t)=x_{\Gamma}(t)+n_{Y}(t)\end{array}\right.$
() در تابع همبستگى (
(
(

 قطع مسير فرمانهاى مغزى و اطلاعات حسى، مشاهد
 قراركيرد چهه اتفاقى خواهد افتا

مانع را رد مىكند.

 (ambient vision) كدام است؟ (focal vision) 1) دقيقتر و سريعتر ـ ديد مركزى نسبت به نور حساس است و در كل شبكيه اتفاق مىافتد. Y) دقيقتر و كندتر ـ ديد محيطى در تشخيص موقعيت شىء ناموفق است و در حالت هوشيارى فعال است. ٪) دقيقتر و كندتر ـ دید مركزى در تشخيص چيستى شىء نقش ممهمترى دارد و در حالت هوشيارى فعال است. ¢ ¢) دقيقتر و سريعتر ـ ديد مركزى نسبت به نور حساس اسـت و در تشـخيص موقعيـت نقـش مهممتـرى نسـبـت بــه
تشخيص چیستى دارد.

- - مايع درون كانالهاى نيمدايرهاى گوشها مىتواند باعث تغيير فشار كاپولا (توده زلاتينى در تماس بــا ســلولهاى مويى) بشود. كانالهاى يكسان در دو گوش فعاليتشان برعكس يكديگر خواهد بود به اين ترتيب كه فعـالشـــــن

مى شود و معادل چه مدار الكتريكى است؟
() تعيين جهت چرخش سر، مدار پوش - پول
Y) تعيين جهت موقعيت تنه، مدار يكسوكننده

٪) تعيين جهت چرخش سر، مدار يكـسوكننده ¢ Q- در يـى آزمايش كه نتايج آن در شكل زير آوردهشدهاست، از فرد خواستهشده كه سريعاً دست خود را بالا ببرد. در اين حركت، EMG مربوط به عضلات آگونيست (سه سر) و آنتاگونيست (دو سر) ثبت شده است. همانگونــه كــه مشاهده مىشود، سيعَنال EMG، حالت سه فاز دارد، يعنـى ابتدا يكى از عضلات (آكونيست) تحريـــى مىشــــود و نيرو ايجاد مى كند. سپس در ميانهكار، عضله مخالف شروع به فعاليت مىكند. اين عملكــرد شــبيه بــه چـــه نــوع

كنترل لننـدهاى است؟
(1) (P) تناسبى (Y)

 و نيروى عضله بهصورت كداميـى از موارد زير است؟

كدام يون نقش مـهمى در انقباضهاى عضلانى دارد و كدام دو حسگَر بهتر تيب به تغييرات طــول و نيــروى عضــله
واكنش نشان مىدهند؟

$$
\begin{array}{r}
\text { ¢ Y }
\end{array}
$$

 دلالت بر وجود كدام مدل دارده

1) مدل معكوس در مخچحه
٪) مدل داخلى جلوسو در مغز

$$
\begin{aligned}
& \text { Y (Y) مدل داخلى معكوس در قسمت قشر حركتى } \\
& \text { ¢ ¢ }
\end{aligned}
$$

¢ ¢) روش اتخاذشده توسط سيستم اعصاب مركزى است و كنترل سفتى، كنترل وضعيت و كنترل نيرو مىتوانند حالتهاى (P) خاصى از آن تلقى شوند.

- - FF كداميكى از پاسخهاى زير درست است؟

افزايش مىدهد.

ץ) عوارض اصلى حركتى اين بيمارى عبارتست از: سفتى عضلات، كندى حركات، لرزش (ترمور)، عدم تعادل و يخ زدگَى
در هنگام راه رفتن.
\& علت اين بيمارى كمبود نروترنسميتر دپامين در عقدههاى قاعدهاى است و راهحل درمانى تاكنون براى اين بيمارى پيدا نشده است.

