

IF•Y آزمون (نيمهمتمركز) ورود به دور ههاى دكترى - سال

حق حاین تكير و انتشار سؤالات به هر روش (اللترونيكى و...) سِس از بركزارى آزمون، براى تمامى اشخاص حقيقى و حقوقى تنهابا مجوز اين سازمان مجاز مىباشدو با متخلفين برابر مقررات رفتار مىشود.

* داوطلب گرامى، عدم درج مشخصات و امضا در مندرجات جدول زير، بهمنزلئ عدم حضور شما در جلسـٔ آزمون است. اينجانب . 1 ... با شا آگاهمى كاره داوطل، يكسانبود

امضا:

ו

$$
\begin{gathered}
\frac{\partial \mathrm{f}}{\partial \mathrm{t}}=\frac{\partial^{r} \mathrm{f}}{\partial \mathrm{x}^{r}}+\frac{\partial^{r} \mathrm{f}}{\partial \mathrm{y}^{r}}() \\
\frac{\partial \mathrm{f}}{\partial \mathrm{t}}=\frac{\partial^{r} \mathrm{f}}{\partial \mathrm{x}^{r}}-\frac{\partial^{r} \mathrm{f}}{\partial \mathrm{y}^{r}}(r \\
\frac{\partial \mathrm{f}}{\partial \mathrm{t}}=\frac{\partial \mathrm{f}}{\partial \mathrm{x}}+\frac{\partial \mathrm{f}}{\partial \mathrm{y}}(r \\
\frac{\partial^{r} \mathrm{f}}{\partial \mathrm{t}^{r}}=\frac{\partial^{r} \mathrm{f}}{\partial \mathrm{x}^{r}}+\frac{\partial^{r} \mathrm{f}}{\partial \mathrm{y}^{r}}\left(\mathrm{l}^{(}\right.
\end{gathered}
$$

جواب عمومى معادله $x \frac{\partial z}{\partial x}+z \frac{\partial z}{\partial y}=y$ كدام است؟

$$
\begin{aligned}
& y+z=f\left(x y^{r}-x z^{r}\right) \\
& y+z=x f\left(y^{r}-z^{r}\right) \\
& y-z=f\left(x z^{r}-x y^{r}\right) \\
& y-z=x f\left(z^{r}-y^{r}\right)
\end{aligned}
$$

re

$$
\begin{aligned}
& \left\{\begin{array}{l}
r=y-x \\
s=y+r x
\end{array}\right. \\
& \left\{\begin{array}{l}
r=y+x \\
s=y-r x
\end{array}\right. \\
& \left\{\begin{array}{l}
r=y+x \\
s=y-x
\end{array}\right. \\
& \left\{\begin{array}{l}
r=y+r x \\
s=y-r x
\end{array}\right.
\end{aligned}
$$

（ $f(x)=\frac{r}{\pi} \int_{0}^{\infty} \frac{1}{w} \sin w \cos w x d w$ باشــ، حاصـل $f(x)= \begin{cases}1 & |x|<1 \\ 0 & |x|>1 \\ 0 & \mid x\end{cases}$

$$
\text { I = } \int_{0}^{\infty} \frac{1}{w} \sin w \cos w d w
$$

- - تبديل فوريه كسينوسى erx برابر كدام است؟

$$
\sqrt{\frac{r}{\pi}} \frac{1}{w^{r}+r}
$$

$$
r \sqrt{\frac{r}{\pi}} \frac{1}{w^{r}-r}(r
$$

$$
r \sqrt{\frac{r}{\pi}} \frac{1}{w^{r}+r}
$$

$$
\sqrt{\frac{r}{\pi}} \frac{1}{w^{r}-r}\left({ }^{r}\right.
$$

¢－

$$
-\mathrm{e}(Y
$$

re (l
e（ ${ }^{〔}$ －re（r
（ $\mathrm{f}(\mathrm{z})=\mathbf{z}^{-r} \cosh \mathbf{z}$ جر جهت پاد ساعتگرد（مخالف حركت عقربههاى ساعت）روى دايره واحد برابر
كدام است؟

$$
\begin{aligned}
& r \pi i \quad \text { (} r \\
& 4 \pi i \quad(1 \\
& \pi \mathrm{i} \text { (}{ }^{〔} \\
& \text { ^ی ییاسخ معادله } \cos z=\text { كدام است؟ } \\
& Z=r \pi n \pm i \ln \left(\frac{r \pm \sqrt{\omega}}{r}\right), n \in \mathbb{Z}(1 \\
& z=\pi n \pm i \ln (r \pm r \sqrt{r}), n \in \mathbb{Z}(r \\
& z=r \pi n \pm i \ln (r \pm r \sqrt{r}), n \in \mathbb{Z}(r \\
& z=\pi n \pm i \ln \left(\frac{r \pm \sqrt{\omega}}{r}\right), n \in \mathbb{Z}(\varphi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{480}(r \\
& -\frac{V}{r g o}(1 \\
& \frac{V}{Y H_{0}}\left(Y^{c}\right. \\
& -\frac{V}{\mu \mu_{0}}(\mu \\
& \text { (أ } \\
& \text { (i) خط موازی محور حقيقى در صفحه مختلط r } \\
& \frac{1}{r} \\
& \text { كداميک از بالهاى زير پساى القايی كمترى دارند؟ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ٪ (ץ) بال بيضوى بال }
\end{aligned}
$$

 نيروى بر آى ايرفويل بالايى) كدام است؟ (

$$
\begin{aligned}
& \frac{r \Gamma_{1}}{\mathrm{~V}_{\infty} \mathrm{C}}-\frac{\Gamma_{1} \Gamma_{r}}{\mathrm{~V}_{\infty}^{r} \pi \mathrm{C}^{r}}(1 \\
& \frac{\Gamma_{1}}{\mathrm{~V}_{\infty} \mathrm{C}}+\frac{\Gamma_{1} \Gamma_{r}}{\mathrm{~V}_{\infty}^{r} \pi \mathrm{C}^{r}}(r \\
& \frac{\Gamma_{1}}{\mathrm{~V}_{\infty} \mathrm{C}}-\frac{\Gamma_{1} \Gamma_{r}}{\mathrm{~V}_{\infty}^{r} \pi \mathrm{C}^{r}}(r \\
& \frac{r \Gamma_{1}}{\mathrm{~V}_{\infty} \mathrm{C}}+\frac{\Gamma_{1} \Gamma_{r}}{\mathrm{~V}_{\infty}^{r} \pi \mathrm{C}^{r}}
\end{aligned}
$$

ri- يكى هوايیماى باربرى با وزن ض

$$
\begin{aligned}
& \text { چند درجه است؟ (} \\
& r(1 \\
& \text { f(r } \\
& \text { D (}{ }^{(r} \\
& 9(1)
\end{aligned}
$$

() افزايش ضريب منظرى بال باعث افزايش
(Y) كاهش ضريب منظرى بال باعث افزايش اندازه الم

؟

هاه - با توجه به نمودارهاى توزيع ضريب فشار ايرفويل، احتمال جدايش جريان بان در كدام حالت، زودتر است؟

جريان گردابه آزاد با قدرت kواقع در مبدأ مختصات را در نظر بگَيريد. مقدار گردش Г حول مسير بسته C كدام است؟

$$
\begin{gathered}
\Gamma=-\frac{r \pi}{r} \mathrm{k} \\
\Gamma=\circ \\
\Gamma=\frac{\pi}{r} \mathrm{k} \\
\Gamma=\frac{r \pi}{r} \mathrm{k}
\end{gathered}
$$

قدرت گردابه آغازين (Starting Vortex) تشكيل شده در عقب ايرفويلى دلخواه به كدام متغير بستگى دارد؟

$$
\begin{aligned}
& \text { (Y }
\end{aligned}
$$

$$
\begin{aligned}
& \text { () ز) زاويه حمله جريان } \\
& \text { ٪) شكل ايرفويل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ؟ }
\end{aligned}
$$

() اصلاح شكل هندسه جسم به اندازه ضخامت لايه

(Y) اصلاح شكل هندسه جسم به اندازء ضخخامت ممنتوم لايه مرزى (
¢) اصلاح شكل هندسه جسم به اندازه ضخامت جابدجايى لايه مرزى (*)

ميدان سرعت يك جريان مادون صوت در دستگاه قطبى بهصورت زير است. در مورد تابع جريان و تابع پتانسيل كدام مورد صحيح است؟ (v لزجت سينماتيكى و t زمان است است) $\mathbf{u}_{\theta}=\frac{1}{r \pi r}\left[1-\exp \left(-\frac{\mathbf{r}^{r}}{\varphi v t}\right)\right], \mathbf{u}_{\mathbf{r}}=\mathbf{u}_{\mathbf{z}}=0$

پr پr

(YY

 ¢ ¢

 نيروى بر آ كدام است؟ $\gamma(\theta)=r \alpha V_{\infty} \frac{1+\cos \theta}{\sin \theta}$ $\mathrm{L}=\frac{1}{r} \rho V_{\infty}^{r} \pi \alpha$ ($\mathrm{L}=\frac{1}{r} \rho \mathrm{~V}_{\infty}^{r} \pi \alpha(r$ $\mathrm{L}=r \rho \mathrm{~V}_{\infty}^{\gamma} \pi \alpha(\mu$ $\mathrm{L}=\frac{r}{r} \rho \mathrm{~V}_{\infty}^{r} \pi \alpha\left({ }_{\rho}\right.$

(

$$
\begin{aligned}
& \left(u_{R}+i u_{\theta}\right) e^{-i \theta} \\
& \left(u_{R}+i u_{\theta}\right) e^{i \theta}
\end{aligned}
$$

$$
\left(\mathrm{u}_{\mathrm{R}}-\mathrm{i} \mathrm{u}_{\theta}\right) \mathrm{e}^{-\mathrm{i} \theta}
$$

$$
\left(u_{R}-i u_{\theta}\right) e^{i \theta}
$$

$$
\begin{aligned}
& \text { () تابع پتانسيل وجود دارد ولى تابع جريان تعريف نمىشود. }
\end{aligned}
$$

ฯץ- معادله برنولى براى جريان سيال ناپايا كدام است؟ (\ddagger (تابع پتانسيل سرعت است.)

$$
\begin{array}{ll}
\mathrm{U} \frac{\partial \mathrm{U}}{\partial \mathrm{t}}+\frac{1}{r} \mathrm{U}^{r}+\frac{\mathrm{p}}{\rho}=\circ(r & \mathrm{U} \frac{\partial \mathrm{U}}{\partial \mathrm{t}}+\frac{1}{r}(\nabla \Phi)^{r}+\frac{\mathrm{p}}{\rho}=\circ() \\
\mathrm{U} \frac{\partial \Phi}{\partial \mathrm{t}}+\frac{1}{r} \mathrm{U}^{r}+\frac{\mathrm{p}}{\rho}=\circ(r & \frac{\partial \Phi}{\partial \mathrm{t}}+\frac{1}{r} \nabla \Phi \cdot \nabla \Phi+\frac{\mathrm{p}}{\rho}=\circ(r
\end{array}
$$

 () (

در نظر بگيريد، حداكثر مقدار سرعت در جهت x كدام است؟ (فاصله دو صفحه h است.

$$
\begin{aligned}
& \frac{\rho g \sin \theta}{\lambda \mu} h^{r} \\
& \frac{\rho g \sin \theta}{r \mu} h^{r}(r \\
& \frac{\rho g \sin \theta}{r \mu} h^{r}(r \\
& \frac{\rho g \sin \theta}{r \mu} h^{r}(\uparrow
\end{aligned}
$$

كq- كدام موارد زير مىتواند جدايش جريان را در لايه مرزى به تعويق بيندازند؟
() تزريق و گَراديان فشار مطلوب r مكش و تراديان فشار مطلوب
-r.

$$
\begin{array}{cc}
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}}(r & \frac{\partial \mathrm{p}}{\partial \mathrm{y}}() \\
\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}(\uparrow & \frac{\partial \mathrm{u}}{\partial \mathrm{y}}-\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\left(\varsigma^{r}\right.
\end{array}
$$

 صورت $\tau=\tau_{\circ} \cos \omega \mathrm{t}$ تغيير مى كند. حداكثر مقدار سرعت روى صفحه كدام است؟

$$
\begin{aligned}
& \frac{\tau_{\circ}}{\sqrt{\rho \mu \omega}}() \\
& \frac{\tau_{\circ}}{\sqrt{r \rho \mu \omega}}(r \\
& \frac{\tau_{\circ}}{r \sqrt{\rho \mu \omega}}(r \\
& \frac{r \tau_{\circ}}{\sqrt{\rho \mu \omega}}\left({ }^{(}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mu \delta^{\Delta}-\Delta \delta^{r}}{1 \Delta}, \frac{\Delta \delta^{r}}{\mu}(r & \frac{\delta^{\Delta}}{\Delta}, \frac{\delta^{r}}{\mu}(1) \\
\frac{\Delta \delta^{r}-r \delta^{\Delta}}{1 \Delta}, \frac{r \delta-\delta^{r}}{r}\left(\varphi^{\mu}\right. & \frac{r \delta^{\Delta}}{\Delta}, \frac{r \delta^{r}}{\mu}(r
\end{aligned}
$$

سّ- ميزان تنش برش درون لولهاى با شعاع R و گراديان فشار

$$
\begin{array}{ll}
-\frac{R}{r} \frac{d p}{d x}(r & \frac{R}{r} \frac{d p}{d x}(1) \\
-\frac{R}{r} \frac{d p}{d x}(\varphi & \frac{R}{r} \frac{d p}{d x}(r
\end{array}
$$

برای پF

> Y) ضخامت لايه مرزى با X رابطه معكوس دارد.

> با فرض عدم وجود گَرانش و ثابتبودن فشار كدام مورد زير، درست است؟
(1) پروفيل سرعت در هر دو سيال نيوتنى و غيرنيوتنى خطى استى است.

رابطه، p فشار ترموديناميكى و ${ }^{\text {P }}$ شود، فشار ترموديناميكى و مكانيكى در چه صور تى برابرند؟ . $\lambda=-\frac{r}{r} \mu(r$ (1) سيال تراكمناپذير باشد.

Y r) سيال ساكن باشد.

 حركت مى كند. ٪) جريان لزج آرام بين دو لوله هممحور با طول بىنهايت كه يكى از لولهها ثابت و ديگرى با سرعت زاويهاى ف حول (
 در هر لحظه از زمان برابر \quad بار $\xrightarrow[\rightarrow 7,4 / 2]{\longrightarrow}$ \qquad بالاى صفحه .〒

 شود، با توجه به رابطه

مرزى و

$\mathbf{x}=$ 。

$$
\delta^{r}=\frac{r \Delta v x}{U}(1
$$

$$
\delta^{r}=\frac{r \circ v \mathrm{x}}{\mathrm{U}}(r
$$

$$
\delta^{r}=\frac{r \Delta v x}{U}(r
$$

$$
\delta^{r}=\frac{q \circ v \mathrm{x}}{U}(\varphi
$$

(تانس
سيال

$$
\begin{array}{ll}
9 \times 10^{-\Delta}(\gamma & 9 \times 10^{-\Delta}() \\
1, \Delta \times 10^{-\Delta}(4 & r \times 10^{-\Delta}(\mu
\end{array}
$$

$$
\begin{array}{lc}
p_{\circ}-r \rho x^{r}(r & p_{\circ}-\rho x^{r}() \\
p_{\circ}-\frac{1}{r} \rho x^{r}(\varphi & p_{\circ}-r \rho x^{r}(r
\end{array}
$$

ץ ץ ثابت هستند.)

$$
\begin{aligned}
& u_{\infty}(x)=\frac{u_{\circ}}{1-\frac{x}{L}}(\zeta \\
& u_{\infty}(x)=\frac{u_{\circ}}{1-\frac{x}{\zeta L}} \text { (} \\
& u_{\infty}(x)=\frac{u_{\circ}}{1+\frac{x}{L}}\left(\varphi^{c}\right. \\
& u_{\infty}(x)=\frac{u_{\circ}}{1+\frac{x}{\zeta L}}
\end{aligned}
$$

() معادله برنولى براى اين جريان صادق است.

ץ
¢

