

IF.Y آزمون (نيمهمتمركز) ورود به دور ههاى دكترى ـ سال

دفتر حئ شماره́ (1)
صبح پنجشنبه

صبح پنجشنبه
$\|F \cdot 1 / T r / T\|$

وزارت علوم، تحقيقات و فنّاورى سازمان سنجش آموزش كشور
"اگر دانشگاه اصلاح شود مملكت اصلاح مىشود." امام خمينى (ره)

مهندسى كامييوتر -معمارى (كد FMAA)

حق حایه تكير و التشار سؤالات به هر روش (الكترونيكى ...) (پس از بركزارى آزمون، براى تمامى اشخاص حتيقى حقوقى تنها با مجوز اين سازمان مجاز مىباششدو با متخلفين برابر مقررات رفتار مىشود.

(6)irantahsil.org

صفحه
(531F)

مهندسى كامپیيوتر - معمارى (كد DهM)

* داوطلب گَرامى، عدم درج مشخصات و امضا در مندرجات جدول زير، بهمنزلئ عدم حضور شما در جلسهٔ آزمون است.

با آكاهى كامل، يكسانبودن شمارئ صندلى خود با \qquad با شماره داوطلبى اينجانب شماره داوطلبى مندرج در بالاى كارت ورود به جلسه، بالاى پاسخنامه و دفترچهُ سؤالات، نوع و كد كنترل درج شده بر روى جلد دفتر چهٔ سؤالات و پايين پاسخنا

امضا:

ا- با فرض اينكه مقدار ABC درست قبل از كلاكى اول برابر با ه०० باشد، در چندمين كلاك حاصــجمــع كننــده در

ا) مقدار V در كلاك 9 ام
Y) مقدار $¢$ در كلاک
r) مقدار V
(Y) مقدار 9 د

ك Verilog/VHDL زير را در نظر بگير يد. با توجه به مقادير ورودىها كه بهصورت شكل موج داده شده اسـت، خروجى Q كدام است؟
$\underline{\text { Verilog }}$
module ParReg (D, ld , clr , clk, Q);

$$
\text { input } D, \text { ld }, \text { clr }, \text { clk; output } Q
$$

wire [7:0]D; wire ld, clr, clk;
reg [7:0]Q;
always@(posedge clk or negedge clr)
if (!clr) begin

$$
\mathrm{Q}=0 ;
$$

end else begin
if (ld) begin

$$
\mathbf{Q}=\mathbf{D}
$$

end
end
end module
VHDL
entity ParReg is
port (D : in bit_vector; clk, ld: in bit; Q : out bit_vector);
end entity ParReg;
architecture RTL of Par Reg is
begin
L: Process (clk, clr)
begin

$$
\text { if }\left(\mathbf{c l r}={ }^{\prime} 0^{\prime}\right) \text { then }
$$

$$
\mathrm{Q}<=\left(\text { others }=>^{\prime} 0^{\prime}\right)
$$

elsif (clk ' event and clk = ' 1 ') then
if $(\mathbf{l d}=$ ' 1 ') then

$$
\mathbf{Q}<=\mathbf{D} ;
$$

end if;
end if ;
end process;
end architecture RTL;

 $A(a, b, c, d)=a_{b c}{ }^{\prime}+c^{\prime} d+a^{\prime} c^{\prime}+b^{\prime} \mathbf{c d}^{\prime}$
$B(a, b, c, d)=\left(a+b+c^{\prime}+d^{\prime}\right)\left(b^{\prime}+c^{\prime}+d\right)\left(a^{\prime}+c+d^{\prime}\right)$

$$
\begin{gathered}
\mathrm{F}=\mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{a}^{\prime} \mathrm{cd}+\mathrm{ad}+\mathrm{a}^{\prime} \mathrm{c}^{\prime} \mathrm{d}^{\prime} \\
\mathrm{F}=\mathrm{ac}^{\prime}+\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{ac}+\mathrm{b}^{\prime} \mathrm{c}^{\prime} \mathrm{d}^{\prime} \\
\mathrm{F}=\mathrm{ab}^{\prime} \mathrm{c}^{\prime}+\mathrm{bc}+\mathrm{abd}+\mathrm{rac}^{\prime} \mathrm{d}^{\prime} \\
\mathrm{F}=\mathrm{ab}^{\prime} \mathrm{c}^{\prime}+\mathrm{a}^{\prime} \mathrm{bc}+\mathrm{ad}+\mathrm{a}^{\prime} \mathrm{c}^{\prime} \mathrm{d}^{\prime}
\end{gathered}
$$

 $D_{1}=\bar{y}_{0} \bar{x}+\bar{y}_{1} x$

$D_{\circ}=\bar{y}_{1} \bar{y}_{0} \bar{x}+y_{1} y_{0} \bar{x}+\bar{y}_{1} y_{0} x$
$D_{1}=\bar{y}_{1} \quad(r$
$D_{\circ}=\bar{y}, \bar{x}+\bar{y}_{1}, y_{0}$
$D_{1}=\bar{y}_{1} x+\bar{y}_{1} \bar{y}_{0}+y_{1} y_{0} \bar{x}_{(}{ }^{\mu}$ $D_{\circ}=\bar{y}_{0} \bar{x}+\bar{y}_{1} y_{0} \mathrm{x}$

$$
\begin{aligned}
& D_{1}=\bar{y}_{1} \\
& D_{0}=\bar{y}_{0} \bar{x}+\bar{y}_{1} y_{0} x
\end{aligned}
$$

ه- هابع خروجى مدار زير كدام است؟ (X X ورودى با ارزشتر و Y ورودى كم ارزشتر است.)

$$
\begin{gathered}
\mathrm{F}=\mathrm{AX}^{\prime}+\mathrm{BX} \\
\mathrm{~F}=\mathrm{A}^{\prime} \mathrm{X}^{\prime}+\mathrm{B}^{\prime} \mathrm{X} \\
\mathrm{~F}=\mathrm{A}^{\prime} \mathrm{Y}+\mathrm{B}^{\prime} \mathrm{Y} \\
\mathrm{~F}=\mathrm{A}^{\prime} \mathrm{Y}^{\prime}+\mathrm{B}^{\prime} \mathrm{Y}
\end{gathered}
$$

با توجه به زمانهاى داده شده، دوره تناوب كلاكى در مدار زیر حداقل چند نانوثانيه باشد، تا مدار درست كار كنـــ؟ (فرض كنيد كه همهٔ ورودىهاى اصلى بهطور همزمان و به اندازه كافى قبل از لبه كلاك اعمال مىشوند. $\left(T_{h}=1 n s, T_{\text {clk-Q }}=r n s, T_{\text {setup }}=r n s, T_{\text {gate }(r-i n p u t)}=\Delta n s, T_{\text {gate }}(r-\right.$ input $)=V n s$

IV (1
1人 (
ro (r
r) (f

مسير دادهٔ شكل زير قادر به اجراى الگوريتمم داده شده نيست. كمترين تغييرات مورد نياز جهت تصحيح اين مسير
 if $(\mathrm{A}>\mathrm{C})$ then

$$
\text { Out }=\mathbf{A} \times \mathbf{B}+\mathbf{C}+\mathbf{D}
$$

else
Out $=(C+D) \times B \times A ;$

() ضربكننده و جمع كننده بايد جابهجا شوند.

مالتى چلكسر M5 متصل شود.

() بعد از چههار سيكل كلاك
(Y) بعد از سه سيكل كلاکى

مى خواهيم براى پيادهسازى ماشين حالت زیر، از حداقل تعداد فليپفلاپ نوع D اســتنفاده كنــيـه. درصــورتى ورودىهاى فيلپٍفلاپپا بدون سادهسازى و با استفاده از يک ROM آماده شوند، ظرفيت اين حافظه حداقل بايد

قالب 8 بيتى اعداد مميز شناور زير را در نظر بگگيريد. تعداد بيتهاى هر بخــش در شــكل مشــخص شـــده اســت. درصورتى كه در اين نمايش از Biased-4 Implicit One Representation و استفاده شود، معــادل مبنــاى ده براى عدد F1 چچند است؟ (عدد در مبناى شانزده است.)

$$
\begin{aligned}
& \text { () () تغييرى نمى كند. } \\
& \text { (} \\
& \text { (} \\
& \text { ح (}
\end{aligned}
$$

مقدار اوليه ثبات R1، صفر است.)
1 (
$2(Y$
3 (
4 (

يكى ا- If

 (Opcode, MemAddr, RegAddr)

$$
\begin{array}{r}
(7 ، 6 ، 4) \\
(6 ، 22 ، 4) \\
(6 ، 6 ، 4) \\
\left(\begin{array}{r}
(\uparrow)
\end{array}\right. \\
(5 ، 16 ، 6)
\end{array}
$$

 (mapping و ظرفيت MB 2 و حافظه اصلى داراى ظرفيت GB 2 است. بلوكهاى حافظه هـر اسـر كــدام 16 بـايتى هستند. ميادين مختلف آدرس: (Tag, Set, Word offset) چند بيتى هستند؟

$$
\begin{aligned}
& (12 ، 15 ، 4)(\uparrow) \\
& (13 ، 15 ، 4)(\uparrow \\
& (11 ، 16 ، 4)(\uparrow \\
& (10 ، 17 ، 4)(\uparrow
\end{aligned}
$$

18- اين برنامه معادل اجراى كدام دستور است و A نشانگر چآيست؟
1: $\mathrm{A} \leftarrow \mathrm{A}-1$
2: $\mathrm{M}[\mathrm{A}] \leftarrow \mathrm{PC}$
3: $\mathrm{PC} \leftarrow \mathrm{X}$
A: Interrupt vector ،INT X () A:Stack pointer ،Call X (Γ
A: Current PC ،BRA X (Γ A:Stack pointer ،RETX (\uparrow شكل زير يك جمحكننده 32 بيتى مبتنى بر جمع كنندههاى با پيشبينى رقم نقلى (IVLA بيتى) را نشان مىدهد:

با فرض اينكه هر گَيت AND ،OR و NOT يكى (فرض كنيد كيت XOR از تركيب گَيتهاى قبلى درست شده است.)

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{C}_{32}}=20 \Delta, \mathrm{t}_{\mathrm{S}_{31}}=23 \Delta(\mathrm{l} \\
& \mathrm{t}_{\mathrm{C}_{32}}=19 \Delta, \mathrm{t}_{\mathrm{S}_{31}}=21 \Delta(\mathrm{r} \\
& \mathrm{t}_{\mathrm{C}_{32}}=18 \Delta, \mathrm{t}_{\mathrm{S}_{31}}=20 \Delta(\mathrm{r} \\
& \mathrm{t}_{\mathrm{C}_{32}}=17 \Delta, \mathrm{t}_{\mathrm{S}_{31}}=20 \Delta\left(\mathrm{c}^{\mathrm{c}}\right.
\end{aligned}
$$

1^- براى اجراى كامل دستورالعمل X) SUBA X خانهاى از حافظه و معمارى مبتنى بر انباشتگر AC است.) كدام خطــوط

a : Decode (IR)
b : MAR $\leftarrow \mathbf{I R}$ (Addr)
$\mathrm{c}: \mathrm{AC} \leftarrow \mathrm{MBR}$
$d: M A R \leftarrow P C$
$\mathrm{e}: \mathrm{IR} \leftarrow \mathrm{MBR}$
f $: \mathbf{M B R} \leftarrow \mathbf{A C}$
$\mathbf{g}: \mathbf{M B R} \leftarrow \mathbf{M}[\mathrm{MAR}]$
$\mathrm{h}: \mathrm{AC} \leftarrow \mathrm{AC}+\mathrm{MBR}$
$\mathrm{i}: \mathrm{PC} \leftarrow \mathrm{PC}+4$
$\mathrm{j}: \mathrm{M}[\mathrm{MAR}] \leftarrow \mathrm{MBR}$
$k: A C \leftarrow A C-M B R$
d, $g, e, a, b, g, k, i(1$
a, d, g, e, b, g, i, k (
$\mathrm{d}, \mathrm{g}, \mathrm{e}, \mathrm{a}, \mathrm{b}, \mathrm{k}, \mathrm{g}, \mathrm{i}(\boldsymbol{\mu}$
e, b, c, g, e, a, h, i (\uparrow
مشخص كنيد تبديل عدد دودويى (Binary) 1100111100 به كد بوت و ضــرب آن در 1010101010 مســتلزم -19 چهه عملياتى به جز جابهجايى (Shift) است؟
(Y
() چههار تفريق و دو جمع
¢
ب) دو تفريق و يك جمع

هر حال اجرا مى گردد.
 وقفه به دست مى آيد پرش مى كند.

¢ حالت وقفه، پردازنده به محلى كه از شماره وقفه يا جدول وقفه بهدست مى آيد پرش مى کیند.

$$
\begin{aligned}
& \text { () گرههاى 1، } \\
& \text { (} \\
& \text { ب) ترههاى } \\
& \text { ب) گرههاى (1) }
\end{aligned}
$$

 5 , 2.5 $4,2.5$ (, 1.17 (1.17 (1.
 : در زير آمده است

$$
\begin{aligned}
& \text { ThriteH }=2 \mathrm{~ns} \text { ، } \mathrm{T}_{\text {ReadH }}=1 \mathrm{~ns}: \text { Hit } \\
& \mathbf{T}_{\text {WriteM }}=10 \mathrm{~ns} \text { ، } \mathrm{T}_{\text {ReadM }}=\mathbf{5 n s} \text { :Miss }
\end{aligned}
$$

كلاً 200 عمل واكشى (Fetch) دستور از حافظه، 120 خواندن داده از حافظه و 80 نوشتن داده در حافظه داريـمم. نرخ برخورد در حافظه نهان برابر 0.95 است. زمان متوسط دستر سى به سيستم حافظه چند نانوثانيه است؟ 3.6 (1
2.44 (
1.44 (
1.14 (${ }^{〔}$
(يكى حافظه نهان با نگَاشت مستقيم داريم كه داراى 256 بلوك است. اندازه هر بلوك 16 بايت است. آدرس 8010 (دهدهى) حافظه اصلى در كدام بلوكى حافظه نهان مىتواند قرار گيرد؟ 245 (1 244 (r 65 (64 (${ }^{4}$
 در صورت نياز مىتوانيد از تكنيك تغيير نام (Renaming) استفاده كنيد. در ضمن، جهت انتقال در دستورات از راست به چֶ چاست.)
I1: Add R1, R4, R6
I2: Sub R3, R1, R6
I3: Xor R6, R2, R3
I4: Sub R5, R5, 1
I5: Add R4, R5, R6
I6: Add R3, R7, R8
I1, I3, I4, I6 (1
I2, I3, I4, I6 (r
I1, I3, I4, I5 (
I1, I2, I4, I6 (4
 حداكثر سرعت عملى و نظرى قابل حصول اين پايِيلاين برحسب تعداد Initiation/Clock (يا همان Operation/clock)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
S1	\mathbf{x}			\mathbf{x}		\mathbf{x}	
S2		\mathbf{x}					
S3			\mathbf{x}				
S4					\mathbf{x}		
S5							\mathbf{x}

$$
\begin{aligned}
& \text { चقدر است } \\
& \frac{1}{2}, \frac{3}{7} \\
& \frac{1}{2}, \frac{2}{7}(\uparrow \\
& \frac{1}{3}, \frac{3}{7}(\Gamma \\
& \frac{1}{3}, \frac{2}{7}
\end{aligned}
$$

كارايی پردازنده A از B بيشتر است.
MIPS_A = 10000 MIPS (1 MIPS_B $=2400$ MIPS

MIPS_A = 100 MIPS (Γ
كارايی پردازنده A از B بيشتر است.
MIPS_B = 240 MIPS
MIPS - A = 10000 MIPS $(\Gamma$ MIPS_B $=2400$ MIPS

MIPS $-\mathrm{A}=100$ MIPS (${ }^{〔}$
MIPS_B = 240 MIPS
چیییى در مورد برترى یک پردازنده بر ديگَرى نمىتوان گَت.
 كنترلر حافظه نهان پردازندهى A متوجه شود كه پردازنده B قصد نوشتن دادهاى را دارد كه نزد A در حالت M است،

> چֶه اتفاقاتى رقم مى خورد؟

به حالت M مىبرد و داده را مقداردهى مى كند.

ץ) پردازنده A داده خود را در حافظه اصلى نوشته، بلوى آنرا به حالت S میبرد. يردازنده B بلوك مزبور را از حافظه
اصلى خوانده، سپس مقدار مىدهد و به وضعيت M مى
¢) پردازنده A داده خود را در حافظه اصلى نوشته، بلوك آنرا به حالت I I میبرد. پردازنده B بلوك مزبور را از حافظه
اصلى خوانده، سپس مقدار مىدهد و به وضعيت M مىبرد.

 100 كار براى يكى پردازنده و 900 كار برای ديگرى برا برابر كدام است؟
 بدون تغيير اندازه Cache و اندازه بلوكها ماري درست اسر است؟) ا اثرى بر روى نرخ Miss ندارد.

 -rr

 1.6 () 1.8 (1.9 (2.0 (

LD R1, 20 (R2)
ثباتها از راست به چچر
LD R2, 20 (R3)
8 (1
ADD R1, R1, R2
9 (
ST 10 (R6), R1
SUB R3, R5, R4

جستجوى داده در هر سطر نياز است؟

هـ
() در روش Write back مشكل درست يا نادرست بودن محتواى بلوى (Clean/Dirty) وجود ندارد. ץ) در روش Write through عمل نوشتن هم در حافظ نهان و همم در حافظه اصلى انجام مىشود.「ّ) در روش Write through مشكل Read Miss بعد از عمل نوشتن اتفاق نمى افتد. ¢ ¢) در روش Write back مر رو مشل نوشتنهاى تكرارى در حافظه اصلى اتفاق نمىافتد.
 كلمات حافظه َاب و تعداد بيتهاى هر كلمه זץ بيت باشد، تعداد خطوط آدرس Column decoder كدام است؟

 يكسان و براى تأخير حداقل انجام شده باشد، ميزان تأخير مدار چند نانوثانثانيه است؟ if (10 (Y 19 (44 (4)

() در فرايندهاى ساخت جديد مدارهاى مجتمع، تاخير سيمها بر تاخير گيتها
 با ولتاز آستانه پايين استفار آناده نمود

(Y)
-

 r
 روى ولتاز آستانه است.

() تفاوتى نمىكند كه كدام سيگنال به كدام ترانزيستور اعمال شود.

 داده شده است) داراى اره ميلىمتر طول، با مقاومت 10 اهـ
 صفر فرض كنيد. بيشينه انحراف كلاك (Clock Skew) بين هر كدام از بلوكها بود؟ (از مدل RC ساده و تأخير المور استفاده كنيد.)

كداميك از عبارات زير درست است؟ -FY

Y) كاهش ولتاز منبع تغذيه طبق قانون مور بوده است. ケ٪) چگَالى جريان با Scaling افزايش مى يابد. ¢) توان پويا با Scaling افزايش مى يابد.
 س برابر كدام تزينه است؟

$\mathbf{t}_{\text {logic, min } B}=r_{\circ \circ \mathbf{p s},} \boldsymbol{t}_{\text {logic, max } B}=r \mathbf{n s}$
$\mathbf{t}_{\operatorname{logic}, \text { minC }}=100 \mathrm{ps}, \mathbf{t}_{\operatorname{logic}, \text { maxC }}=0, \Delta \mathrm{~ns}$
 ورودى به خروجى، (t Hold

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{on}}<r \Lambda \circ \mathrm{ps}(l \\
& \mathrm{T}_{\mathrm{on}}>r \circ \circ \mathrm{ps}(r \\
& \mathrm{T}_{\mathrm{on}}<\mu \Lambda \circ \mathrm{ps}(r \\
& \mathrm{T}_{\mathrm{on}}>q \mu \circ \mathrm{ps}(\varphi
\end{aligned}
$$

$$
\begin{gathered}
(.) ~ د \ln r=1) \\
9 R C+\frac{r R C_{L}}{S}() \\
9 R C+\frac{r R C_{L}}{S}(r \\
\epsilon R C+\frac{r R C_{L}}{S}(r \\
\varphi R C+\frac{R C_{L}}{S}(\uparrow
\end{gathered}
$$

